グラスウール中の音響伝搬現象について -離散複数音源による実験と伝搬定数による理論的考察-

止会員 〇石	湖	昭雄?
--------	---	-----

グラスウール	多孔質材料	軽量2重壁
遮音効果	屈折	音響伝搬定数

1. はじめに

グラスウールは吸音効果や軽量 2 重壁に挿入すること による遮音性能向上効果が知られる多孔質材料で、諸効 果を知るには音響インピーダンスや音響伝搬定数等の把 握が重要である^{1,2)}。音響伝搬定数を計測すると材料内で の減衰と音速低下が明瞭に判り、空気中からグラスウー ル内への伝搬で屈折現象が想定され、筆者は実際にこれ ら様々な実験や考察を行い³⁻⁵⁾、今回も音源等の入射条件 を変えて屈折に関わる検討を行ったので結果を報告する。 2.実験概要

Fig.1 に実験系統図を示す。床面にグラスウールを厚く 積層させ、試験対象のグラスウール(32K)をその上に配置 する。試料下に 1 軸感度指向性を有する粒子速度センサ ーを配置して、これに向けて約 1 m 離れた音源スピーカ からホワイトノイズを放射し鉛直と水平の方向別音響強 度を計測した。入射角度は 0 度(鉛直)から 90 度(水平)まで 10 度ごとで、合板箱に収納した口径 70mm の小型スピー 力を代表点から 100mm 間隔に 5 点平行移動して音源に見 かけ上の拡がりを与えて平面波入射条件に近づけた実験 条件とした。分析は音源信号に対する伝達関数分析を行 ない、代表の中央 1 点による分析と 5 点分散配置同相駆 動条件での伝搬特性の分析処理も加えた。グラスウール 試料の厚さは 25,50,75mm とし、試料無し(0mm)を比較基 準とした。グラスウール内の伝搬角度のと音響伝搬強度 U を水平鉛直 2 成分強度 u_z, u_xから以下の式で推定した。

Experimental and theoretical consideration of sound refraction and attenuation in porous material of glass wool

3. 実験結果

まず、GW32K の試料無し (0mm) で点音源での入射角 0,30,45,60,80 度の例を Fig.2(A)に示す。これを見ると、試 料無しで鉛直に近い入射条件を含め入射角度より鉛直に 近づく傾向が認められる。これまで水平入射条件では観 測されたが、床面反射防止のグラスウール 250mm 層にセ ンサーをより密着配置した影響と考えられる。

50mm 厚試料をセンサーの上側に配置してグラスウール 中の伝搬方向を推定した結果を示した Fig.2(B)では、試料 無し(0mm)と比べて全般的により法線方向に近づく傾向が 明瞭であり、低い周波数ほどその傾向が強いことが判る。 なお、Fig.3 に示したスピーカーを 5 個仮想配置条件の場 合、分析結果の周波数特性に凹凸の乱れが生じている。 これはスピーカー間の位相干渉の影響と考えられる。平 面波音場の再現にはより細かで広い範囲に音源配置が必 要な事が示唆される結果と考えられる。

以上の伝搬角度について、グラスウール内では中音域 で 30 度、高音域でも 60 度前後の伝搬角度であり屈折現 象を想起される音響伝搬が再確認された。

グラスウール中の音響伝搬での減衰量として、センサ ー上に試料が無い場合と比較した Fig.2(C),Fig.3(C)の結果 を見ると、低い周波数で 0dB を超える乱れも窺えるが,周 波数が増すに従い数 dB から 20dB 程度まで強度低下、入 射角度が水平に近づくに従いより減衰が大きい傾向が明 らかであり、試料厚さが厚いほど減衰が増す結果も得ら れている。参考に、後述の Fig.5 での垂直入射時の u_x成分 と 80 度入射時の u_x成分の減衰値と比較すると鉛直入射時 と水平入射に近い場合の減衰量と概ね対応することがわ かる。グラスウール中の斜め伝搬時の減衰はこの両実験 値の間と考えてよさそうと思われる。

4. 伝搬特性の理論推定結果との比較

以上の例について、GW32K の伝搬定数計測値^{1.2)}を Fig.4(A)のように近似した複素波長定数を Snell の法則に 適用して⁹⁰、グラスウール中への屈折角とそれによる見か け長くなる伝搬経路の透過減衰を推定した。その結果を Fig.4(B),(C)に示す。これを見ると、低い周波数や高い周 波数でやや傾向は異なるが中高音域では水平入射でも 60 度前後に進行し、減衰も数 dB から 20dB 程度となるなど Fig.3 に示した離散音源の場合と概ね対応する。

5. 軽量2重壁への挿入効果の考察³⁾

軽量二重壁へのグラスウール挿入効果はグラスウール 内の伝搬特性に依存し、全体の遮音性能は概略、①音源 側の入射角度に依存した単板の遮音性能と、②以上に述 べたグラスウール層透過減衰、さらに③透過側 2 層目へ の入射角度に依存した単板料の遮音性能を併せ推定する。 透過減衰は今回の実験や検討から Fig.3 や Fig.4 に示した 値から把握できるが、Fig.5 (A) に示す垂直入射の鉛直成 分と水平入射の水平成分の減衰の間の値と考えられる。

2 層目の板材料の遮音性能に関し、前述のグラスウール内 の伝搬角度(屈折角度)を入射角度と考えるのが妥当で、コ インシデンス効果もこの影響を受ける。例えば、同厚2 層構造の場合でも垂直に近づく屈折角度で入射すると仮 定すると、Fig.6 に示す様にコインシデンス周波数は 1/3 オクターブ程度やや高い側へ移行し、見掛け上の異厚化 効果も加わって遮音低下が抑制されると期待される。

6. まとめ

(1)スピーカ 5 個を離散配置した幅を持たせた音源で斜め入射時のグラスウール内での伝搬角度と減衰を観測した。
(2)屈折現象が想定できる角度変化と減衰効果を確認した。
(3)中音域でもこれらの効果が確認できた。

(4)音響伝搬定数を Snell の法則に適用して、屈折現象を推定し、実験結果との概ねの対応が得られた。

*新潟大学工学部 教授・工博

*Prof., Dept of Architecture, Faculty of Engineering Niigata Univ., Dr. Eng